[image:]

Technical Implementation Guide

Unity Catalog Implementation Guide

Version: 1.0
Date: January 2026
Author: Mastech Digital - Data Engineering Practice

Executive Summary
Unity Catalog is Databricks' unified governance solution for data and AI assets. It provides centralized access control, auditing, lineage tracking, and data discovery across all workspaces in a Databricks account. This comprehensive implementation guide provides enterprise architects and data platform teams with the knowledge required to successfully deploy, configure, and operate Unity Catalog in production environments.
Unity Catalog addresses critical enterprise requirements for data governance, including fine-grained access control, automated data lineage, centralized metadata management, and compliance auditing. By implementing Unity Catalog, organizations can establish a single source of truth for data governance while enabling secure data sharing across teams and business units.
This document covers the complete implementation lifecycle from initial architecture decisions through production deployment, migration strategies, and operational best practices.
1. Introduction to Unity Catalog
1.1 What is Unity Catalog?
Unity Catalog is a unified governance solution that provides:
Centralized Metadata Management: Single metastore for all data assets
Fine-Grained Access Control: Table, column, and row-level security
Automated Data Lineage: Track data flow from source to consumption
Data Discovery: Search and browse all data assets
Cross-Workspace Sharing: Share data securely between workspaces
Audit Logging: Complete audit trail of data access
Key Differentiators
	Capability
	Hive Metastore
	Unity Catalog

	Cross-workspace access
	No
	Yes

	Fine-grained permissions
	Limited
	Full

	Automated lineage
	No
	Yes

	Data sharing
	Manual
	Built-in

	Audit logging
	Basic
	Comprehensive

	AI asset governance
	No
	Yes

1.2 Architecture Overview
Unity Catalog introduces a three-level namespace hierarchy:
Account
└── Metastore (one per region)
 ├── Catalog
 │ ├── Schema
 │ │ ├── Table
 │ │ ├── View
 │ │ ├── Function
 │ │ └── Model
 │ └── Schema
 └── Catalog
Component Responsibilities
	Component
	Description
	Scope

	Account
	Top-level Databricks account
	Organization

	Metastore
	Regional metadata store
	One per region

	Catalog
	Logical grouping of schemas
	Environment/domain

	Schema
	Collection of data objects
	Project/team

	Table/View
	Data objects
	Individual assets

1.3 Three-Level Namespace
The three-level namespace provides logical organization and access control boundaries:
-- Full qualified name
SELECT * FROM catalog.schema.table;

-- Example namespaces
SELECT * FROM production.sales.orders;
SELECT * FROM development.marketing.campaigns;
SELECT * FROM analytics.finance.revenue_summary;
Namespace Strategy Examples
	Strategy
	Catalog Pattern
	Use Case

	Environment
	dev, staging, prod
	Lifecycle separation

	Domain
	sales, marketing, finance
	Business domain

	Team
	data_engineering, data_science
	Team ownership

	Hybrid
	prod_sales, dev_marketing
	Combined approach

2. Planning and Prerequisites
2.1 Assessment Checklist
Before implementing Unity Catalog, assess the following:
Technical Prerequisites
	Requirement
	Status
	Notes

	Databricks Premium/Enterprise
	Required
	Unity Catalog license

	Account admin access
	Required
	Initial setup

	Cloud storage access
	Required
	Metastore storage

	Network connectivity
	Required
	Cross-workspace access

Organizational Prerequisites
	Requirement
	Status
	Notes

	Data governance policy
	Recommended
	Access control framework

	Data classification
	Recommended
	Sensitivity levels

	Ownership model
	Recommended
	Data stewardship

	Migration plan
	Required
	From Hive metastore

2.2 Architecture Decisions
Metastore Deployment Model
Option 1: Single Metastore (Recommended for most)
┌───┐
│ Unity Metastore │
│ (us-east-1) │
├───┤
│ Workspace 1 │ Workspace 2 │ Workspace 3│
│ (Dev) │ (Staging) │ (Prod) │
└───┘

Option 2: Multi-Region Metastores (Large enterprises)
┌──────────────────────┐ ┌──────────────────────┐
│ Unity Metastore │ │ Unity Metastore │
│ (us-east-1) │ │ (eu-west-1) │
├──────────────────────┤ ├──────────────────────┤
│ US Workspaces │ │ EU Workspaces │
└──────────────────────┘ └──────────────────────┘
Catalog Organization Strategy
-- Environment-based (Recommended)
CREATE CATALOG development;
CREATE CATALOG staging;
CREATE CATALOG production;

-- Domain-based
CREATE CATALOG sales;
CREATE CATALOG marketing;
CREATE CATALOG finance;

-- Hybrid approach
CREATE CATALOG prod_sales;
CREATE CATALOG prod_marketing;
CREATE CATALOG dev_sandbox;
2.3 Storage Architecture
Managed Storage Location
-- Create metastore with managed storage
-- (Done via Account Console or API)

-- Configure metastore root storage
-- Azure: abfss://unity@storageaccount.dfs.core.windows.net/
-- AWS: s3://unity-metastore-bucket/
-- GCP: gs://unity-metastore-bucket/

-- Create catalog with custom storage
CREATE CATALOG production
MANAGED LOCATION 'abfss://production@storage.dfs.core.windows.net/';

-- Create schema with custom storage
CREATE SCHEMA production.sales
MANAGED LOCATION 'abfss://sales@storage.dfs.core.windows.net/';
External Locations
-- Create storage credential
CREATE STORAGE CREDENTIAL azure_credential
WITH (
 AZURE_MANAGED_IDENTITY = '<managed-identity-id>'
);

-- Create external location
CREATE EXTERNAL LOCATION sales_landing
URL 'abfss://landing@storage.dfs.core.windows.net/sales'
WITH (STORAGE CREDENTIAL azure_credential);

-- Grant access to external location
GRANT READ FILES ON EXTERNAL LOCATION sales_landing TO `data_engineers`;
GRANT WRITE FILES ON EXTERNAL LOCATION sales_landing TO `data_engineers`;
3. Metastore Configuration
3.1 Creating a Metastore
Via Account Console
Navigate to Account Console > Data
Click "Create metastore"
Configure:
Name: production-metastore
Region: us-east-1
Storage root: s3://unity-metastore/
Via Terraform
resource "databricks_metastore" "production" {
 name = "production-metastore"
 storage_root = "s3://unity-metastore-prod/"
 owner = "account_admins"
 region = "us-east-1"
 force_destroy = false

 delta_sharing_scope = "INTERNAL"
 delta_sharing_recipient_token_lifetime_in_seconds = 3600
 delta_sharing_organization_name = "MyOrganization"
}

Assign metastore to workspace
resource "databricks_metastore_assignment" "production" {
 metastore_id = databricks_metastore.production.id
 workspace_id = var.workspace_id
}
3.2 Metastore Configuration Options
-- View metastore configuration
DESCRIBE METASTORE;

-- Configure delta sharing
ALTER METASTORE SET
 DELTA_SHARING_SCOPE = 'INTERNAL_AND_EXTERNAL',
 DELTA_SHARING_RECIPIENT_TOKEN_LIFETIME = 3600;

-- Configure system schemas
ALTER METASTORE SET
 SYSTEM_SCHEMA_ACCESS_ENABLED = TRUE;
System Schemas
	Schema
	Purpose
	Key Tables

	system.access
	Audit and access logs
	audit, column_lineage

	system.billing
	Usage and billing
	usage, list_prices

	system.compute
	Cluster metrics
	clusters, node_types

	system.information_schema
	Metadata
	tables, columns

3.3 Workspace Assignment
from databricks.sdk import AccountClient

account = AccountClient()

List workspaces
workspaces = account.workspaces.list()

Assign metastore to workspace
account.metastore_assignments.create(
 workspace_id=workspace_id,
 metastore_id=metastore_id,
 default_catalog_name="main"
)

Update default catalog
account.metastore_assignments.update(
 workspace_id=workspace_id,
 metastore_id=metastore_id,
 default_catalog_name="production"
)
4. Catalog and Schema Management
4.1 Creating Catalogs
-- Create catalog with managed storage
CREATE CATALOG production
COMMENT 'Production data catalog';

-- Create catalog with custom storage location
CREATE CATALOG production
MANAGED LOCATION 'abfss://production@storage.dfs.core.windows.net/'
COMMENT 'Production data catalog';

-- View catalog details
DESCRIBE CATALOG EXTENDED production;

-- Set catalog properties
ALTER CATALOG production SET PROPERTIES (
 'owner' = 'data_engineering',
 'environment' = 'production'
);
4.2 Creating Schemas
-- Create schema in catalog
CREATE SCHEMA production.bronze
COMMENT 'Raw ingested data';

CREATE SCHEMA production.silver
COMMENT 'Cleaned and conformed data';

CREATE SCHEMA production.gold
COMMENT 'Business-level aggregates';

-- Schema with custom location
CREATE SCHEMA production.external_data
MANAGED LOCATION 'abfss://external@storage.dfs.core.windows.net/'
COMMENT 'External data sources';

-- View schema details
DESCRIBE SCHEMA EXTENDED production.bronze;
4.3 Table Management
Managed Tables
-- Create managed table (Unity Catalog manages storage)
CREATE TABLE production.bronze.raw_events (
 event_id STRING,
 event_type STRING,
 event_timestamp TIMESTAMP,
 payload STRING,
 _ingestion_date DATE
)
USING DELTA
PARTITIONED BY (_ingestion_date)
COMMENT 'Raw event data from source systems';

-- Table properties
ALTER TABLE production.bronze.raw_events SET TBLPROPERTIES (
 'delta.enableChangeDataFeed' = 'true',
 'delta.autoOptimize.optimizeWrite' = 'true'
);
External Tables
-- Create external table (existing data location)
CREATE TABLE production.external.legacy_data
USING DELTA
LOCATION 'abfss://legacy@storage.dfs.core.windows.net/data'
COMMENT 'Legacy data from previous system';

-- External table from parquet files
CREATE TABLE production.external.vendor_data
USING PARQUET
LOCATION 'abfss://vendor@storage.dfs.core.windows.net/data'
OPTIONS (
 'mergeSchema' = 'true'
);
4.4 Views and Functions
Creating Views
-- Standard view
CREATE VIEW production.gold.sales_summary AS
SELECT
 DATE_TRUNC('month', order_date) as month,
 region,
 SUM(amount) as total_revenue,
 COUNT(*) as order_count
FROM production.silver.orders
GROUP BY 1, 2;

-- Secure view with row-level security
CREATE VIEW production.gold.secure_orders AS
SELECT *
FROM production.silver.orders
WHERE region = current_user_region();
User-Defined Functions
-- Create SQL function
CREATE FUNCTION production.common.mask_email(email STRING)
RETURNS STRING
RETURN CONCAT(LEFT(email, 2), '****@****', RIGHT(email, 4));

-- Create Python UDF
CREATE FUNCTION production.common.calculate_score(value DOUBLE)
RETURNS DOUBLE
LANGUAGE PYTHON
AS $$
 if value is None:
 return 0.0
 return value * 1.5 + 10
$$;
5. Access Control
5.1 Permission Model
Unity Catalog uses a hierarchical permission model where permissions cascade down the hierarchy.
Permission Inheritance
CATALOG (USAGE, CREATE SCHEMA)
 └── SCHEMA (USAGE, CREATE TABLE)
 └── TABLE (SELECT, MODIFY)
Permission Types
	Permission
	Applies To
	Description

	USAGE
	Catalog, Schema
	Access namespace

	CREATE SCHEMA
	Catalog
	Create schemas

	CREATE TABLE
	Schema
	Create tables

	CREATE FUNCTION
	Schema
	Create functions

	SELECT
	Table, View
	Read data

	MODIFY
	Table
	Write data

	ALL PRIVILEGES
	Any
	Full access

5.2 Granting Permissions
Catalog-Level Permissions
-- Grant catalog usage
GRANT USAGE ON CATALOG production TO `data_analysts`;
GRANT USAGE ON CATALOG production TO `data_engineers`;

-- Grant schema creation
GRANT CREATE SCHEMA ON CATALOG production TO `data_engineers`;
GRANT ALL PRIVILEGES ON CATALOG development TO `data_engineers`;
Schema-Level Permissions
-- Grant schema access
GRANT USAGE ON SCHEMA production.gold TO `data_analysts`;
GRANT ALL PRIVILEGES ON SCHEMA production.bronze TO `data_engineers`;

-- Grant table creation
GRANT CREATE TABLE ON SCHEMA production.silver TO `data_engineers`;
GRANT CREATE FUNCTION ON SCHEMA production.common TO `data_engineers`;
Table-Level Permissions
-- Grant read access
GRANT SELECT ON TABLE production.gold.sales_summary TO `data_analysts`;
GRANT SELECT ON ALL TABLES IN SCHEMA production.gold TO `data_analysts`;

-- Grant write access
GRANT MODIFY ON TABLE production.silver.orders TO `etl_service_principal`;
GRANT ALL PRIVILEGES ON TABLE production.bronze.raw_events TO `data_engineers`;
5.3 Row and Column-Level Security
Row-Level Security with Row Filters
-- Create row filter function
CREATE FUNCTION production.security.region_filter(region STRING)
RETURN IF(
 is_member('global_admins'),
 TRUE,
 region = (SELECT region FROM production.security.user_regions
 WHERE user = current_user())
);

-- Apply row filter to table
ALTER TABLE production.silver.orders
SET ROW FILTER production.security.region_filter ON (region);

-- Users only see rows matching their region
SELECT * FROM production.silver.orders;
Column-Level Security with Masking
-- Create masking function
CREATE FUNCTION production.security.mask_ssn(ssn STRING)
RETURN CASE
 WHEN is_member('pii_viewers') THEN ssn
 ELSE CONCAT('XXX-XX-', RIGHT(ssn, 4))
END;

-- Apply column mask
ALTER TABLE production.silver.customers
ALTER COLUMN ssn SET MASK production.security.mask_ssn;

-- Query shows masked data for non-privileged users
SELECT customer_id, name, ssn FROM production.silver.customers;
-- Result: 12345, John Doe, XXX-XX-1234
5.4 Service Principal Access
from databricks.sdk import WorkspaceClient
from databricks.sdk.service.catalog import SecurableType, Privilege

w = WorkspaceClient()

Create service principal
sp = w.service_principals.create(
 display_name="etl-automation",
 application_id="<azure-ad-app-id>"
)

Grant permissions to service principal
w.grants.update(
 securable_type=SecurableType.TABLE,
 full_name="production.bronze.raw_events",
 changes=[{
 "principal": f"SP:{sp.application_id}",
 "add": [Privilege.SELECT, Privilege.MODIFY]
 }]
)
6. Data Lineage
6.1 Understanding Lineage
Unity Catalog automatically tracks data lineage across tables, columns, and notebooks.
Lineage Capture
	Operation
	Lineage Captured

	INSERT INTO
	Source to target table

	MERGE INTO
	Source to target columns

	CREATE TABLE AS
	Query to new table

	Notebook execution
	Notebook to tables

6.2 Querying Lineage
Table-Level Lineage
-- View upstream tables (data sources)
SELECT
 source_table_full_name,
 source_column_name,
 target_table_full_name,
 target_column_name
FROM system.access.table_lineage
WHERE target_table_full_name = 'production.gold.sales_summary'
ORDER BY event_time DESC;

-- View downstream tables (consumers)
SELECT
 target_table_full_name,
 target_column_name
FROM system.access.table_lineage
WHERE source_table_full_name = 'production.silver.orders'
ORDER BY event_time DESC;
Column-Level Lineage
-- Track column transformations
SELECT
 source_table_full_name,
 source_column_name,
 target_table_full_name,
 target_column_name,
 event_time
FROM system.access.column_lineage
WHERE target_table_full_name = 'production.gold.sales_summary'
AND target_column_name = 'total_revenue'
ORDER BY event_time DESC;
6.3 Lineage Visualization
Query lineage programmatically
from databricks.sdk import WorkspaceClient

w = WorkspaceClient()

Get table lineage
lineage = w.lineage.list_lineage_by_table(
 table_name="production.gold.sales_summary",
 include_entity_lineage=True
)

Build lineage graph
upstream_tables = [
 edge.source.table_info.name
 for edge in lineage.upstreams
]

downstream_tables = [
 edge.target.table_info.name
 for edge in lineage.downstreams
]
7. Data Sharing
7.1 Delta Sharing Overview
Delta Sharing enables secure data sharing without copying data.
Sharing Models
	Model
	Use Case
	Implementation

	Internal
	Cross-workspace
	Unity Catalog shares

	External
	Cross-organization
	Delta Sharing protocol

7.2 Creating Shares
Internal Sharing (Cross-Workspace)
-- Create share
CREATE SHARE sales_data_share
COMMENT 'Sales data for partner team';

-- Add tables to share
ALTER SHARE sales_data_share
ADD TABLE production.gold.sales_summary;

ALTER SHARE sales_data_share
ADD TABLE production.gold.product_catalog
PARTITION (region = 'US');

-- Grant share to recipient
GRANT SELECT ON SHARE sales_data_share TO `partner_team`;
External Sharing (Cross-Organization)
-- Create recipient for external organization
CREATE RECIPIENT acme_corp
COMMENT 'ACME Corporation data partner';

-- Get activation link for recipient
DESCRIBE RECIPIENT acme_corp;

-- Grant share to recipient
GRANT SELECT ON SHARE sales_data_share TO RECIPIENT acme_corp;
7.3 Consuming Shared Data
-- Create catalog from share (recipient side)
CREATE CATALOG shared_sales_data
USING SHARE provider_org.sales_data_share;

-- Query shared data
SELECT * FROM shared_sales_data.default.sales_summary;

-- View available shares
SHOW SHARES;

-- View share contents
DESCRIBE SHARE sales_data_share;
8. Migration from Hive Metastore
8.1 Migration Assessment
Inventory Current State
-- Inventory Hive tables
SELECT
 database,
 tableName,
 tableType,
 CASE
 WHEN location LIKE '%dbfs%' THEN 'DBFS'
 WHEN location LIKE '%s3%' THEN 'S3'
 WHEN location LIKE '%abfss%' THEN 'ADLS'
 ELSE 'Other'
 END as storage_type,
 location
FROM hive_metastore.default.tables_info;

-- Count objects by type
SELECT
 tableType,
 COUNT(*) as count
FROM hive_metastore.information_schema.tables
GROUP BY tableType;
8.2 Migration Strategies
Strategy 1: In-Place Upgrade (External Tables)
-- Create external table pointing to existing location
CREATE TABLE production.migrated.legacy_orders
USING DELTA
LOCATION 's3://existing-bucket/orders'
COMMENT 'Migrated from hive_metastore.sales.orders';

-- Verify data
SELECT COUNT(*) FROM production.migrated.legacy_orders;
Strategy 2: Deep Clone (Managed Tables)
-- Clone table to Unity Catalog
CREATE TABLE production.migrated.orders
DEEP CLONE hive_metastore.sales.orders
COMMENT 'Migrated from Hive metastore';

-- Clone with schema conversion
CREATE TABLE production.bronze.events (
 event_id STRING,
 event_type STRING,
 event_timestamp TIMESTAMP,
 payload STRING
)
USING DELTA;

INSERT INTO production.bronze.events
SELECT * FROM hive_metastore.raw.events;
Strategy 3: SYNC Command
-- Sync entire schema
SYNC SCHEMA production.migrated FROM hive_metastore.legacy
DRY RUN;

-- Execute sync
SYNC SCHEMA production.migrated FROM hive_metastore.legacy;
8.3 Migration Runbook
Phase 1: Preparation
1. Create target catalog and schemas
catalogs = ["production", "development"]
schemas = ["bronze", "silver", "gold"]

for catalog in catalogs:
 spark.sql(f"CREATE CATALOG IF NOT EXISTS {catalog}")
 for schema in schemas:
 spark.sql(f"CREATE SCHEMA IF NOT EXISTS {catalog}.{schema}")

2. Create storage credentials and external locations
(See Section 2.3)

3. Configure permissions
(See Section 5)
Phase 2: Migration Execution
Migrate tables from Hive to Unity Catalog
def migrate_table(source_db, source_table, target_catalog, target_schema):
 source_path = f"hive_metastore.{source_db}.{source_table}"
 target_path = f"{target_catalog}.{target_schema}.{source_table}"

 # Get source table info
 source_info = spark.sql(f"DESCRIBE EXTENDED {source_path}")

 # Determine migration strategy
 table_type = source_info.filter("col_name = 'Type'").first()["data_type"]

 if table_type == "EXTERNAL":
 # External table - create reference
 location = source_info.filter("col_name = 'Location'").first()["data_type"]
 spark.sql(f"""
 CREATE TABLE {target_path}
 USING DELTA
 LOCATION '{location}'
 """)
 else:
 # Managed table - deep clone
 spark.sql(f"""
 CREATE TABLE {target_path}
 DEEP CLONE {source_path}
 """)

 print(f"Migrated: {source_path} -> {target_path}")

Execute migration
migration_manifest = [
 ("sales", "orders", "production", "silver"),
 ("sales", "customers", "production", "silver"),
 ("raw", "events", "production", "bronze"),
]

for source_db, source_table, target_catalog, target_schema in migration_manifest:
 migrate_table(source_db, source_table, target_catalog, target_schema)
Phase 3: Validation
Validate migration
def validate_migration(source_path, target_path):
 source_count = spark.sql(f"SELECT COUNT(*) FROM {source_path}").first()[0]
 target_count = spark.sql(f"SELECT COUNT(*) FROM {target_path}").first()[0]

 source_schema = spark.sql(f"DESCRIBE {source_path}").collect()
 target_schema = spark.sql(f"DESCRIBE {target_path}").collect()

 return {
 "source_count": source_count,
 "target_count": target_count,
 "count_match": source_count == target_count,
 "schema_match": len(source_schema) == len(target_schema)
 }

Run validation
for source_db, source_table, target_catalog, target_schema in migration_manifest:
 source_path = f"hive_metastore.{source_db}.{source_table}"
 target_path = f"{target_catalog}.{target_schema}.{source_table}"
 result = validate_migration(source_path, target_path)
 print(f"{source_path}: {result}")
Phase 4: Cutover
Update notebook references
Find: hive_metastore.sales.orders
Replace: production.silver.orders

Update job configurations
Update BI tool connections
Update application connection strings

Deprecate Hive metastore access
Gradually remove permissions to hive_metastore
9. Best Practices
9.1 Naming Conventions
	Object
	Convention
	Example

	Catalog
	lowercase, environment
	production, development

	Schema
	lowercase, domain
	sales, marketing

	Table
	lowercase, snake_case
	customer_orders

	Column
	lowercase, snake_case
	order_date

	Function
	lowercase, snake_case
	mask_email

9.2 Access Control Best Practices
-- 1. Create groups, not individual grants
CREATE GROUP data_analysts;
CREATE GROUP data_engineers;
CREATE GROUP data_scientists;

-- 2. Grant to groups, not users
GRANT SELECT ON ALL TABLES IN SCHEMA production.gold TO data_analysts;

-- 3. Use inheritance effectively
GRANT USAGE ON CATALOG production TO data_analysts;
-- Then grant at schema level as needed

-- 4. Regular permission audits
SELECT
 grantee,
 privilege_type,
 table_catalog,
 table_schema,
 table_name
FROM system.information_schema.table_privileges
WHERE grantee = 'data_analysts';
9.3 Operational Best Practices
Monitoring
-- Monitor catalog usage
SELECT
 user_identity.email,
 request_params.catalog_name,
 action_name,
 COUNT(*) as access_count
FROM system.access.audit
WHERE event_date >= current_date() - INTERVAL 7 DAYS
AND service_name = 'unityCatalog'
GROUP BY 1, 2, 3
ORDER BY access_count DESC;

-- Monitor failed access attempts
SELECT
 event_time,
 user_identity.email,
 action_name,
 request_params,
 response.error_message
FROM system.access.audit
WHERE response.status_code >= 400
AND service_name = 'unityCatalog'
AND event_date >= current_date() - INTERVAL 1 DAY
ORDER BY event_time DESC;
Maintenance
-- Review stale permissions
SELECT
 grantee,
 privilege_type,
 table_catalog,
 table_schema,
 table_name
FROM system.information_schema.table_privileges
WHERE grantee NOT IN (
 SELECT user_name FROM system.information_schema.users
 WHERE last_access_time >= current_date() - INTERVAL 90 DAYS
);

-- Review unused tables
SELECT
 table_catalog,
 table_schema,
 table_name,
 created,
 last_altered
FROM system.information_schema.tables
WHERE last_altered < current_date() - INTERVAL 180 DAYS;
10. Troubleshooting
10.1 Common Issues
	Issue
	Cause
	Resolution

	"PERMISSION_DENIED"
	Missing grants
	Check USAGE + required privilege

	"CATALOG_NOT_FOUND"
	Workspace not assigned
	Verify metastore assignment

	"STORAGE_CREDENTIAL_MISSING"
	External location issue
	Create storage credential

	"TABLE_NOT_FOUND"
	Three-level namespace
	Use full table name

10.2 Diagnostic Queries
-- Check effective permissions
SHOW GRANTS ON TABLE production.silver.orders;
SHOW GRANTS TO `current_user`;

-- Check metastore assignment
SELECT current_metastore();
SELECT current_catalog();

-- Verify object exists
SHOW TABLES IN production.silver;
DESCRIBE TABLE EXTENDED production.silver.orders;

-- Check storage credential
SHOW STORAGE CREDENTIALS;
DESCRIBE STORAGE CREDENTIAL my_credential;
10.3 Support Resources
	Resource
	URL

	Documentation
	docs.databricks.com/unity-catalog

	Knowledge Base
	kb.databricks.com

	Community Forum
	community.databricks.com

	Support Portal
	help.databricks.com

11. Implementation Checklist
11.1 Pre-Implementation
	Task
	Owner
	Status

	Assess current state (Hive inventory)
	
	

	Define catalog/schema strategy
	
	

	Design access control model
	
	

	Create storage credentials
	
	

	Plan migration approach
	
	

11.2 Implementation
	Task
	Owner
	Status

	Create metastore
	
	

	Assign workspaces
	
	

	Create catalogs and schemas
	
	

	Configure external locations
	
	

	Create groups and permissions
	
	

	Migrate tables
	
	

	Configure row/column security
	
	

11.3 Post-Implementation
	Task
	Owner
	Status

	Validate migrations
	
	

	Update application references
	
	

	Configure monitoring
	
	

	Document procedures
	
	

	Train users
	
	

Document Version: 1.0
Last Updated: January 2026
Author: Mastech Digital - Data Engineering Practice
image1.png
#MAST=CH
DIGITAL

